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ABSTRACT

With the increasing complexity of modern industry processes, robotics, transportation, aerospace,

power grids, an exact model of the physical systems are extremely hard to obtain whereas abun-

dant of time-series data can be captured from these systems. This makes it a important and

demanding research area to investigate feasibility of using data to learn behaviours of systems and

design controllers where the end goal generally evolves around stabilization. Transfer operators

i.e. Perron-Frobenius and Koopman operators play an undeniable role in advanced research of

nonlinear dynamical system stabilization. These operators have been a alternate direction of how

we generally approach dynamical systems, providing linear representations for even strongly non-

linear dynamics. There is tremendous benefit of acquiring a linear model of a system using these

models but, there remains a challenge of infinite dimension for such models. To deal with it, we can

approximate a finite dimensional matrix of these operators e.g. Koopman matrix using Extended

Dynamic Mode Decomposition (EDMD) or Naturally Structured Dynamic Mode Decomposition

(NSDMD). Using duality property of Koopman and P-F operators we can derive formulation for

P-F matrix from Koopman matrix. Once we have a linear approximation of the system, Lyapunov

measure approach can be used along with a linear programming based computational framework for

stability analysis and design of almost everywhere stabilizing controller. In this work, we propose

a complete structure to stabilize a system that does not have an explicit model and only requires

black box input output time-series data. On a separate work, we show a set-oriented approach can

be used to control and stabilize systems with known dynamics model however having stochastic

parameters. Essentially, this work proposes two approaches to stabilize a nonlinear system using

both of known system model with inherent uncertainty and stabilize a black box system entirely

using input-output data.
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CHAPTER 1. INTRODUCTION

Dynamical systems are studied in many aspects of science, technology, economics, evolution

and what not. There is fun to work with these systems, gather insights, observe trajectories but

these systems come with lot of challenges which are known to the researchers in these domains.

Linear systems are easier to deal with and multiple tools and algorithms exist to understand those.

However, nonlinear systems are harder to approach, gather insight or analyze.

Designing controllers for dynamical systems and performing optimal stabilization are two of

the most active research areas within control systems community. Lyapunov functions are used

for stability analysis and control Lyapunov functions are used in the design of stabilizing feedback

controllers. The goal of our research is to solve stabilization problems for nonlinear dynamical

systems. In this work, specifically Transfer operator approach is used for controller design and

stabilization of such systems. Transfer Perron-Frobenius and Koopman operators allow us to obtain

useful insight of the system added to what we have from state space dynamics. The basic idea behind

these methods is to shift the focus from the state space where the system evolution is nonlinear

to measure space or space of functions where the system evolution is linear. The linearity of the

transfer operator framework offers several advantages for analysis and design problems involving

nonlinear systems. However, analyzing the evolution of densities and observables are the most

important prerequisites for dealing with transfer operators.

1.1 Survey of Related Work

The standard approach for control system can be divided into two parts: system identification

or modeling, and control design for desired performance. Stability analysis and stabilization of

dynamical systems are two classical problems in control theory with applications ranging across

various engineering discipline. Systematic tools exist for stability analysis and control design for



www.manaraa.com

2

linear systems, however, for nonlinear systems, this is still an active area of research. The intro-

duction of linear transfer operator theoretic methods from dynamical system theory provides an

opportunity to analyze and design nonlinear systems Dellnitz and Junge (1999); Mezic and Ba-

naszuk (2004); Froyland (2001); Junge and Osinga (2004b); Dellnitz et al. (2005); Mezić (2005);

Mehta and Vaidya (2005); Vaidya and Mehta (2008). These operators can be specifically used for

systematic approach for the stability analysis and stabilization of nonlinear systems Lasota and

Mackey (1994); Dellnitz and Junge (2002); Mezić (2005). The transfer operator theoretic meth-

ods involving Perron-Frobenius (P-F) and Koopman operators provide a linear representation of a

nonlinear system by shifting the focus from the state space to the space of measures or densities

and functions.

In particular, transfer operator-based methods are used for identifying steady state dynamics of

the system from the invariant measure of transfer operator, identifying almost invariant sets, and

coherent structures Dellnitz and Junge (2002); Froyland and Dellnitz (2003); Froyland and Padberg

(2009). The spectral analysis of transfer operators are also applied for reduced order modeling of

dynamical systems with applications to building systems, power grid, and fluid mechanics Mehta

and Vaidya (2005); Budǐsić et al. (2012). Operator-theoretic methods have also been successfully

applied to address design problems in control dynamical systems. Transfer operator methods can

be used for almost everywhere stability verification, control design, nonlinear estimation, and for

solving optimal sensor placement problem Surana and Banaszuk (2016); Raghunathan and Vaidya

(2014); Vaidya and Mehta (2008); Rajaram et al. (2010); Vaidya et al. (2010); Vaidya (2007b);

Sinha et al. (2016). Linear nature of the transfer P-F operator is exploited using linear programming

based procedure for stability analysis and optimal control design of nonlinear systems Raghunathan

and Vaidya (2014); Das et al. (2017). Lyapunov measure and control Lyapunov measure were

introduced for almost everywhere stability verification and design of stabilizing feedback controller

for a nonlinear system.

On the other hand, in this era of big data, there is new excitement towards developing data-

driven methods for the analysis and control of complex dynamics Schmid (2010); Brunton et al.
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(2016); Kutz et al. (2016). This has led to continued interest in the data-driven approximation

of Koopman and P-F operators. These data-driven methods predominantly evolve around finite-

dimensional approximation of Koopman operator, dual to transfer P-F operator Rowley et al.

(2009); Williams et al. (2015); Klus et al. (2015); Huang and Vaidya (2016). Spectral analysis

of Koopman operator and its finite dimensional approximation constructed from time-series data

has been successfully applied to address analysis problems in several applications Budisic et al.

(2012); Susuki and Mezic (2011); Surana and Banaszuk (2016); Mehta and Vaidya (2005). There

has also been attempt to extend their applicability for control design for nonlinear systems Kaiser

et al. (2017); Peitz and Klus (2017); Korda and Mezi (2018). However, they do not exploit the real

potential and linear nature of Koopman operator for control design i.e., they do not provide linear

approach for control design of nonlinear system.

1.2 Main Contributions of Thesis

The main contribution of this work is to show that systematic data-driven linear methods can

be developed for optimal controller design of nonlinear system exploiting the true potential of the

linear operator theoretic framework. This method, relies on gathering knowledge of state space

using transfer operators to obtain globally optimal stabilizing control.

This main contribution towards developing systematic data-driven control design for a nonlinear

system is made possible by utilizing not only the linearity but also positivity, Markov property,

and duality between Koopman and P-F operators. In particular Naturally Structured Dynamic

Mode Decomposition (NSDMD) algorithm provides a data-driven approximation of Koopman and

P-F operators and preserves positivity and Markov properties of these operators Huang and Vaidya

(2016). We show that the NSDMD algorithm can be combined with systematic model-based transfer

P-F operator approach to provide a data-driven linear programming-based method for optimal

control of a nonlinear system. However, there are certain choices of basis function depending on

the system dimension and number of basis function, spread of state-space and type of instability

if known. We showed the true potential of the approach making use of multiple simulation of
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both discrete and continuous time systems with different dimensions and having different type of

instabilities. Also, as a connected work, we showed set-oriented numerical stabilization for a system

that offers a true model but has stochastic parameters.

1.3 Organization of Thesis

In chapter 2, several definitions and theorems are discussed explaining Transfer operator, Dy-

namic Model Decomposition and Lyapunov measure based stability analysis.

In chapter 3, We discuss our proposed approaches for optimal stabilization. This is a brief

discussion containing the main ideas and steps on the algorithm. Details and Simulations are

discussed in following chapters.

Chapter 4 contains additional numerical detail and the simulations for data-driven optimal

control design.

Chapter 5 is self-contained with detail of set-oriented approach for stochastic stabilization.

In chapter 6, we make concluding remarks for the thesis overall.

1.4 References

Brunton, S. L., Proctor, J. L., and Kutz, J. N. (2016). Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of
Sciences, 113(15):3932–3937.

Budisic, M., Mohr, R., and Mezic, I. (2012). Applied koopmanism. Chaos, 22:047510–32.

Budǐsić, M., Mohr, R., and Mezić, I. (2012). Applied koopmanisma). Chaos: An Interdisciplinary
Journal of Nonlinear Science, 22(4):047510.

Das, A. K., Raghunathan, A. U., and Vaidya, U. (2017). Transfer operator-based approach for
optimal stabilization of stochastic systems. In American Control Conference (ACC), 2017, pages
1759–1764. IEEE.

Dellnitz, M. and Junge, O. (1999). On the approximation of complicated dynamical behavior.
SIAM Journal on Numerical Analysis, 36:491–515.

Dellnitz, M. and Junge, O. (2002). Set oriented numerical methods for dynamical systems, pages
221–264. World Scientific.
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Dellnitz, M., Junge, O., Koon, W. S., Lekien, F., Lo, M., Marsden, J. E., Padberg, K., Preis, R.,
Ross, S. D., and Thiere, B. (2005). Transport in dynamical astronomy and multibody problems.
International Journal of Bifurcation and Chaos, 15:699–727.

Froyland, G. (2001). Extracting dynamical behaviour via Markov models. In Mees, A., editor,
Nonlinear Dynamics and Statistics: Proceedings, Newton Institute, Cambridge, 1998, pages 283–
324. Birkhauser.

Froyland, G. and Dellnitz, M. (2003). Detecting and locating near-optimal almost-invariant sets
and cycles. SIAM Journal on Scientific Computing, 24(6):1839–1863.

Froyland, G. and Padberg, K. (2009). Almost-invariant sets and invariant manifolds?connecting
probabilistic and geometric descriptions of coherent structures in flows. Physica D: Nonlinear
Phenomena, 238(16):1507–1523.

Huang, B. and Vaidya, U. (2016). Data-driven approximation of transfer operators: Naturally
structured dynamic mode decomposition. In https://arxiv.org/abs/1709.06203.

Junge, O. and Osinga, H. M. (2004). A set oriented approach to global optimal control. ESAIM:
Control, optimisation and calculus of variations, 10(2):259–270.
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CHAPTER 2. TRANSFER OPERATORS, DMD, EDMD, NSDMD,

LYAPUNOV MEASURE, OPTIMAL STABILIZATION

2.1 Transfer Operators and Their Properties

If a given system operates on a density as an initial condition, rather than on a single point,

then successive densities are given by a linear integral operator, known as the Frobenius-Perron

operator Lasota and Mackey (1994). We will briefly discuss Frobenius-Perron alternatively called

Perrron-Frobenius or P-F operator, followed by another closely related operator called Koopman

operator.

Consider a discrete time dynamical system

xt+1 = T (xt) (2.1)

where T : X ⊂ RN → X is assumed to be invertible and smooth diffeomorphism. Furthermore,

we denote by B(X) the Borel-σ algebra on X and M(X) vector space of bounded complex valued

measure on X. Associated with this discrete time dynamical systems are two linear operators

namely Koopman and Perron-Frobenius (P-F) operator. These two operators are defined as follows.

Definition 1 (Perron-Frobenius Operator) PT :M(X)→M(X) is given by

[Pµ](A) =

∫
X
δT (x)(A)dµ(x) = µ(T−1(A))

δT (x)(A) is stochastic transition function which measure the probability that point x will reach the

set A in one time step under the system mapping T .

Definition 2 (Invariant measure) The fixed points of the P-F operator PT that are additionally

probability measures. Let µ̄ be the invariant measure then, µ̄ satisfies

µ̄P = µ̄
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Under the assumption that the state space X is compact it can be shown that the P-F operator

admits at least one invariant measure.

Definition 3 (Koopman Operator) Given any h ∈ F , U : F → F is defined by

[Uh](x) = h(T (x))

We can state the following properties for the Koopman and Perron-Frobenius operators.

i) For F = L2(X,B, µ̄) as the Hilbert space it is easy to see that

‖ Uh ‖2=

∫
X
|h(T (x))|2dµ̄(x)

=

∫
X
|h(x)|2dµ̄(x) =‖ h ‖2

where we used the fact the µ̄ is an invariant measure. This implies that Koopman operator

is unitary.

ii) For any h ≥ 0, we have [Uh](x) ≥ 0 and hence Koopman is a positive operator.

iii) If we define P-F operator act on the space of densities i.e., L1(X) and Koopman operator on

space of L∞(X) functions, then it can be shown that the P-F and Koopman operators are

dual to each others as follows 1

〈Uf, g〉 =

∫
X

[Uf ](x)g(x)dx

=

∫
X
f(y)g(T−1(y))

∣∣∣∣dT−1

dy

∣∣∣∣ dy = 〈f,Pg〉

where f ∈ L∞(X) and g ∈ L1(X) and the P-F operator on the space of densities L1(X) is

defined as follows

[Pg](x) = g(T−1(x))|dT
−1(x)

dx
|

iv) For g(x) ≥ 0, [Pg](x) ≥ 0.

1with some abuse of notation we are using the same notation for the P-F operator defined on the space of measure
and densities.
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v) Let (X,B, µ) be the measure space where µ is a positive but not necessarily the invariant

measure of T : X → X, then the P-F operator P : L1(X,B, µ) → L1(X,B, µ) satisfies

following properties.

∫
X

[Pg](x)dµ(x) =

∫
X
g(x)dµ(x)

The linearity of the P-F operator combined with the properties 2.1 (iv) and 2.1 (v), makes the

P-F operator a particular case of Markov operator. This Markov property of P-F operator has

significant role on its finite dimensional approximation. We will discuss it in following chapters on

set-oriented numerical methods and gaussian basis function based finite dimensional approximation

of P-F operator. Since P and U are unitary operators their spectrum lies on the unit circle. Given

the adjoint nature of two operators, the spectrum of these operators are related. To study the

connection between the spectrum of these two operators, interested readers can follow the analysis

in Mezic and Banaszuk (2004) and Mehta and Vaidya (2005) (Theorem 5 and Corollary 6) for results

connecting the spectrum of transfer Koopman and P-F operator both in infinite dimensional and

finite dimensional setting.

2.2 Data-driven Approximation of Transfer Operators

2.2.1 Dynamic mode decomposition (DMD), Extended DMD and NSDMD

Dynamic Mode Decomposition method (DMD) has been introduced Schmid (2010) for the

dynamical analysis of the fluid flow field data. DMD can be used as a computation algorithm

for approximating the spectrum of Koopman operator Rowley et al. (2009). Extension of the

DMD is presented in the form of Extending DMD (EDMD) Williams et al. (2015) which is more

realistic when it comes to approximating the spectrum of Koopman operator for both linear and

nonlinear systems. To be precise, DMD can be viewed as a special case of EDMD. Going further
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in the direction to DMD, there is Naturally Structured Dynamic Mode Decomposition (NSMD)

proposed to incorporate inherent properties of Koopman and P-F operators Huang and Vaidya

(2016). Having taken care of these properties NSDMD allows to approximate the operators in a

more realistic fashion.

Consider snapshots of data set obtained from a discrete time dynamical system z → T (z) or

from an experiment

X = [x1, x2, . . . , xM ], Y = [y1, y2, . . . , yM ] (2.2)

where xi ∈ X and yi ∈ X. The two pair of data sets are assumed to be related and one is just a

delayed by one step in time i.e., yi = T (xi). Now, let D = {ψ1, ψ2, . . . , ψK} be the set of dictionary

functions or observables. The dictionary functions are assumed to belong to ψi ∈ L2(X,B, µ) = G,

where µ is some positive measure not necessarily the invariant measure of T . Let GD denote the

span of D such that GD ⊂ G. The choice of dictionary functions are very crucial and it should be

rich enough to approximate the leading eigenfunctions of Koopman operator. Define vector valued

function Ψ : X → CK

Ψ(x) :=

[
ψ1(x) ψ2(x) · · · ψK(x)

]
(2.3)

In this application, Ψ is the mapping from physical space to feature space. Any function φ, φ̂ ∈ GD
can be written as

φ =
K∑
k=1

akψk = ΨTa, φ̂ =
K∑
k=1

âkψk = ΨT â (2.4)

for some set of coefficients a, â ∈ CK . Let

φ̂(x) = [Uφ](x) + r,

where r ∈ G is a residual function that appears because GD is not necessarily invariant to the action

of the Koopman operator. To find the optimal mapping which can minimize this residual, let K

be the finite dimensional approximation of the Koopman operator.
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Then the matrix K is obtained as a solution of least square problem as follows

min
K
‖ GK−A ‖F (2.5)

G =
1

M

M∑
m=1

Ψ(xm)>Ψ(xm)

A =
1

M

M∑
m=1

Ψ(xm)>Ψ(ym), (2.6)

with K,G,A ∈ CK×K . The optimization problem (3.2) can be solved explicitly to obtain following

solution for the matrix K

KEDMD = G†A (2.7)

where G† is the psedoinverse of matrix G. Hence, under the assumption that the leading Koopman

eigenfunctions are nearly contained within GD, the subspace spanned by the elements of D. The

eigenvalues of K are the EDMD approximation of Koopman eigenvalues. The right eigenvectors of

K generate the approximation of the eigenfunctions in (2.8). In particular, the approximation of

Koopman eigenfunction is given by

φj = Ψvj (2.8)

where vj is the j-th right eigenvector of K, φj is the eigenfunction approximation of Koopman

operator associated with j-th eigenvalue.

DMD is a particular case of EDMD, and it corresponds to the case where the dictionary functions

are chosen to be equal to D = {e>1 , . . . , e>K}, where ei ∈ RN is a unit vector with 1 at ith position

and zero elsewhere. With this choice of dictionary function, it can be shown the approximation of

the Koopman operator using DMD approach can be written as

KDMD = Y X
†
,

where X and Y are dataset as defined in (2.2).

NSDMD is EDMD with added constraints to preserve positivity and markov properties of the

transfer operators. Here, dictionary functions are same as EDMD. We will explain some properties

of PF and Koopman Operator and outline the NSDMD algorithm.
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The Koopman operator corresponding to dynamical system (2.14) is defined as

[Uh](x) = h(F (x)),

where h ∈ C0(X). The Koopman and P-F operators are dual to each other and the duality is

expressed as follows 2

〈Uh, g〉 =

∫
X

[Uh](x)g(x)dx

=

∫
X
h(x)[Pg](x)dx = 〈h,Pg〉 , (2.9)

where h ∈ L∞(X) and g ∈ L1(X) and the P-F operator on the space of densities are defined as

follows:

[Pg](x) = g(F−1(x))|dF
−1(x)

dx
|

Furthermore, these two operators also satisfy positivity property i.e., for any h ≥ 0 and g ≥ 0, we

have Uh ≥ 0 and Pg ≥ 0. Another important property the P-F operator satisfies is the Markov

property ∫
X

[Pg](x)dµ(x) =

∫
X
g(x)dµ(x),

where P : L1(X,µ)→ L1(X,µ) and µ is not necessarily invariant probability measure. The NSDMD

algorithm approximate Koopman operator while preserving the positivity property. Furthermore,

the duality between the Koopman and P-F operator combined with the Markov property of the

P-F operator is exploited to provide data-driven approximation of P-F operator from the Koopman

operator. Hence the NSDMD algorithm can be viewed as Extended Dynamic Mode Decomposition

(EDMD) with added constraints to ensure positivity and Markov property Williams et al. (2015).

Assumption 4 We assume that ψj(x) ≥ 0 for j = 1, . . . ,K and define

[Λ]ij =

∫
X
ψi(x)ψj(x)dx. (2.10)

2With some abuse of notation we are using the same notation to define the P-F operator acting on the space of
functions and measures
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Under Assumption 4, the finite dimensional approximation of Koopman operator K ∈ RK×K ,

and P-F operator P ∈ RK×K , can be formulated as following optimization problem

min
K
‖ GK −A ‖F (2.11)

s.t. Kij ≥ 0, (Koopman positive constraints)

[ΛKΛ−1]ij ≥ 0, (P− F positive constraints)

ΛKΛ−11 = 1, (P− F Markov constraints)

where G and A are defined as follows:

G =
1

M

L∑
m=1

Ψ(xm)>Ψ(xm)

A =
1

M

L∑
m=1

Ψ(xm)>Ψ(ym). (2.12)

and 1 is the vector of all ones. The P-F operator P is given by P = Λ−1K>Λ.

The matrix Λ in Eq. (2.10) can be computed explicitly.

2.3 Set-oriented Numerical Approach for Controller Design

Set-oriented numerical methods are primarily developed for the finite dimensional approxima-

tion of the Perron-Frobenius operator for the case where system dynamics are known Dellnitz and

Junge (2002); Dellnitz et al. (2001). However, these algorithms can be modified or extended to the

case where system information is available in the form of time series data. The basic idea behind

set-oriented numerics is to partition the state space, X, into the disjoint set of boxes Di such that

X = ∪Ni=1Di. Consider a finite partition X
′

= {D1, . . . , DK}. Now, instead of a Borel σ-algebra,

consider a σ-algebra of all possible subsets of X. A real-valued measure µj is defined by attribut-

ing to each element Dj a real number. This allows one to identify the associated measure space

with a finite-dimensional real vector space RK . A given mapping T : X → X defines a stochastic
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transition function δT (x)(·). This function can be used to obtain a coarser representation of P-F

operator denoted by P′ : RK×K → RK×K as follows: For µ
′

= (µ
′
1, . . . , µ

′
K) we define a measure

on X as

dµ(x) =
K∑
k=1

µ
′
kχDk(x)

dm(x)

m(Dk)

where χDk(x) is the indicator function of Dk and dm is the Lebesgue measure. The finite dimen-

sional approximation of the P-F matrix, P′, can now be obtained as follows:

ν ′i = [P′µ′](Di) =
K∑
j=1

∫
Dj

δT (x)(Di)µ
′
j

dm(x)

m(Dj)

=
K∑
j=1

µ′kP
′
ij (2.13)

where

P′ij =
m(T−1(Dj) ∩Di)

m(Dj)

The resulting matrix P′ is a Markov matrix and is row stochastic if we consider state µ′ to be a row

vector multiplying from the left of P . The individual entries of this Markov matrix can be obtained

by Monte-Carlo approach by running simulation over short time interval starting from different ini-

tial conditions. Typically individual boxesDi will be populated withM uniformly distributed initial

conditions. The entry Pij is then approximated by fraction of initial conditions that are in box Dj

in one forward iteration of the mapping T . The Monte Carlo based approach can be extended for

computation of the P-F transfer operator from time series data. Let {x0, T (x0), . . . , TN−1(x0)} be

the time series data set. The number of initial conditions in box i is then given by

N−1∑
k=0

χi(T
k(x0))

where χi is the indicator function of box i. The (i, j) entry for P-F matrix P′ij is then given by the

fraction of these initial conditions from box i that ends up in box j after one iterate of time and is

given by following formula.

P′ij =
1∑N−1

k=0 χi(T k(x0))

N−1∑
k=0

χi(T
k(x0))χj(T

k+1(x0)).
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2.4 Lyapunov Measure and Stability

In this section we provide brief overview of the application of linear transfer P-F operator

framework for almost everywhere stability analysis and optimal stabilization of nonlinear system

using Lyapunov measure Vaidya and Mehta (2008); Vaidya et al. (2010); Raghunathan and Vaidya

(2014).

2.4.1 Lyapunov measure for stabilization

Consider the discrete-time dynamical systems of the form,

xn+1 = F (xn), (2.14)

where F : X → X is assumed to be continuous with X ⊂ Rq, a compact set. We denote B(X) as the

Borel-σ algebra onX andM(X) as the vector space of a real valued measure on B(X). The mapping

F is assumed to be nonsingular with respect to the Lebesgue measure `, i.e., `(F−1(B)) = 0, for

all sets B ∈ B(X), such that `(B) = 0. In this paper, we are interested in data-driven optimal

stabilization of an attractor set defined as follows:

Definition 5 (Attractor set) A set A ⊂ X is said to be forward invariant under F , if F (A) = A.

A closed forward invariant set A is said to be an attractor set, if there exists a neighborhood V ⊂ X

of A, such that ω(x) ⊂ A for all x ∈ V , where ω(x) is the ω limit set of x.

Remark 6 We will use the notation U(ε) to denote the ε > 0 neighborhood of the attractor set A

and m ∈M(X), a finite measure absolutely continuous with respect to Lebesgue.

Definition 7 (a.e. stable with geometric decay) The attractor set A ⊂ X for a dynamical

system (2.14) is said to be almost everywhere (a.e.) stable with geometric decay with respect to

some finite measure m ∈ M(X), if given any ε > 0, there exists M(ε) < ∞ and β < 1, such that

m{x ∈ Ac : Fn(x) ∈ X \ U(ε)} < M(ε)βn.

The above set-theoretic notion of a.e. stability was introduced and verified by using the linear

transfer operator framework Vaidya and Mehta (2008). For the discrete time dynamical system
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(2.14), the linear transfer Perron Frobenius (P-F) operator denoted by PF : M(X) → M(X) is

given by,

[PFµ](B) =

∫
X
χB(F (x))dµ(x) = µ(F−1(B)), (2.15)

where χB(x) is the indicator function supported on the set B ∈ B(X) and F−1(B) is the inverse

image of set B Lasota and Mackey (1994). We define a sub-stochastic operator as a restriction of

the P-F operator on the complement of the attractor set as follows:

[P1
Fµ](B) :=

∫
Ac
χB(F (x))dµ(x), (2.16)

for any set B ∈ B(Ac) and µ ∈ M(Ac). The condition for the a.e. stability of an attractor set A

with respect to some finite measure m is defined in terms of the existence of the Lyapunov measure

µ̄, defined as follows Vaidya and Mehta (2008).

Definition 8 (Lyapunov measure) The Lyapunov measure is defined as any non-negative mea-

sure µ̄, finite outside U(ε) (see Remark 6), and satisfies the following inequality, [P1
F µ̄](B) <

γ−1µ̄(B), for some γ ≥ 1 and all sets B ∈ B(X \ U(ε)), such that m(B) > 0.

The following theorem provides the condition for a.e. stability with geometric decay Vaidya

(2007a).

Theorem 9 An attractor set A for the dynamical system (2.14) is a.e. stable with geometric decay

with respect to finite measure m, if and only if for all ε > 0 there exists a non-negative measure µ̄,

which is finite on B(X \ U(ε)) and satisfies

γ[P1
F µ̄](B)− µ̄(B) = −m(B), (2.17)

for all measurable sets B ⊂ X \ U(ε) and for some γ > 1 and where the geometric decay rate is

given by β ≤ 1
γ < 1

Proof 10 We refer readers to Theorem 9 from Vaidya (2007a) for the proof.

Stabilization of the attractor set is posed as a co-design problem of jointly obtaining the control

Lyapunov measure µ̄ and the control P-F operator PC Vaidya et al. (2010).
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In the following section we explain how the stabilization framework using Lyapunov measure

can be extended to optimization stabilization using Lyapunov measure.

2.4.2 Optimal stabilization

The basic idea behind the optimal stabilization is to augment the control Lyapunov measure

equation with a cost function so that the attractor set A is stabilized while minimizing a certain

cost.

We consider the following cost function.

CC(B) =

∫
B

∞∑
n=0

γnG ◦ C(xn)dm(x), (2.18)

where x0 = x, the cost function G : Y → R is assumed a continuous non-negative real-valued

function, such that G(A, 0) = 0, xn+1 = T ◦C(xn), and 0 < γ < 1
β . Under the assumption that the

controller mapping C renders the attractor set a.e. stable with a geometric decay rate, β < 1
γ , the

cost function (2.18) is finite. In the following we will use the notion of the scalar product between

continuous function h ∈ C0(X) and measure µ ∈ M(X) as 〈h, µ〉X :=
∫
X h(x)dµ(x) Lasota and

Mackey (1994). The following theorem proves the cost of stabilization of the set A as given in Eq.

(2.18) can be expressed using the control Lyapunov measure equation.

Theorem 11 Let the controller mapping C(x) = (x,K(x)), be such that the attractor set A for

the feedback control system T ◦ C : X → X is a.e. stable with geometric decay rate β < 1. Then,

the cost function (2.18) is well defined for γ < 1
β and, furthermore, the cost of stabilization of the

attractor set A with respect to Lebesgue almost every initial condition starting from set B ∈ B(X1)

can be expressed as follows:

CC(B) =
∫
B

∑∞
n=0 γ

nG ◦ C(xn)dm(x)

=
∫
Ac×U G(y)d[P1

C µ̄B](y) =
〈
G,P1

C µ̄B
〉
Ac×U , (2.19)

where x0 = x and µ̄B is the solution of the following control Lyapunov measure equation,

γP1
T · P1

C µ̄B(D)− µ̄B(D) = −mB(D), (2.20)
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for all D ∈ B(X1) and where mB(·) := m(B∩·) is a finite measure supported on the set B ∈ B(X1).

Proof 12 Refer to Raghunathan and Vaidya (2012) (Theorem 24) for the proof.

By appropriately selecting the measure on the right-hand side of the control Lyapunov measure

equation (2.20) (i.e., mB), stabilization of the attractor set with respect to a.e. initial conditions

starting from a particular set can be studied. The minimum cost of stabilization is defined as the

minimum over all a.e. stabilizing controller mappings C with a geometric decay as follows:

C∗(B) = min
C
CC(B). (2.21)

Using (5.12) and (2.20) the infinite dimensional linear program for optimal stabilization can be

written as follows. We first define the projection map, P1 : Ac × U → Ac as: P1(x, u) = x, and

denote the P-F operator corresponding to P1 as PP1 :M(Ac×U)→M(Ac), which can be written

as [P1
P1
θ](D) =

∫
Ac×U χD(P1(y))dθ(y) =

∫
D×U dθ(y) = µ(D). Using this definition of projection

mapping P1 and the corresponding P-F operator, we can write the linear program for the optimal

stabilization of set B with unknown variable θ as follows:

min
θ≥0
〈G, θ〉Ac×U ,

s.t. γ[P1
T θ](D)− [P1

P1
θ](D) = −mB(D), (2.22)

for D ∈ B(X1).
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CHAPTER 3. PROPOSED APPROACHES

3.1 System

A control system in practice generally consists of a system black box, multiple sensors to acquire

measurements of current states or outputs, and the controller, which decides the next control action

to take based on the outputs and desired target. In many cases, one might not have access to the

original states xi, rather will have access to the certain outputs y. Controller will try to reach the

reference r (for stabilization, these are the fixed or equilibrium point of the system), therefore will

take certain control actions depending on current measured outputs y.

Controller System

Disturbances

u

Measurements

r e y

−

ym

Figure 3.1: Control System

3.2 Data-driven Optimal Stabilization

Assume we have a black box model of the system and we can obtain input output time-series

data. The end goal is to find a stabilizing controller for the system. Consider the system to be

discrete time for now. The main steps we propose to reach the goal.

• Approximate a system model from data using Koopman operator.

• Approximate the Perron-Frobenius operator using duality property
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• Use linear programming based approach for control design and optimal stabilization

To expand on these main steps and give a complete structure of the algorithm used for the

work, we summarize the algorithm for data-driven control as the following

1) Data acquisition: Obtain input output time-series data from the dynamical system. These

are essentially evolution of states which will be used to obtain a evolution of observables in

following steps.

X = [x1, x2, . . . , xL]

Y = [y1, y2, . . . , yL]

Where, xi ∈ Rn are states for the discrete time transformation T : X ⊂ RN → X. Again, X

and Y are related by just a one time step delay yi = T (xi).

2) Observable Space: Introduce appropriate basis functions for defining the observable space.

These basis functions should be able to represent the function space where the evolution will be

linear. Moreover, considering the positivity property of Perron-Frobenius operator, we chose

a basis function which is positive. For the scope of control design work, it has been observed

and studied that gaussian radial basis functions are a good candidate for such representation

as they are nonzero nonnegative functions everywhere in the state space.

Ψ(x) = [ψ1(x), . . . , ψN (x)]>

ψi(x) = e
(x−xi)

2

σ2 (3.1)

where x ∈ Rn are the states and xi ∈ Rn are centers of basis functions.
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Parameters for radial basis functions:

Number of basis functions, N

Center of basis functions, xi

Spread of basis σ

3) Approximate Koopman Operator: Solve the Optimization problem either using EDMD

or NSDMD.

For EDMD, the matrix K is obtained as a solution of least square problem as follows

min
K
‖ GK−A ‖F (3.2)

G =
1

L

L∑
m=1

Ψ(xm)>Ψ(xm)

A =
1

L

L∑
m=1

Ψ(xm)>Ψ(ym), (3.3)

with K,G,A ∈ CK×K . Solution to this optimization is

KEDMD = G†A (3.4)

For NSDMD, we compute Λ from the inner products of the basis functions assuming that

ψj(x) ≥ 0 for j = 1, . . . , N and define

[Λ]ij =

∫
X
ψi(x)ψj(x)dx. (3.5)

Using Kernel trick for radial basis functions, it can be shown that

Λij = (
πσ2

2
)
N/2

exp (−‖xi − xj‖
2

2σ2
) (3.6)
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we solve the following optimization

min
K
‖ GK −A ‖F (3.7)

s.t. Kij ≥ 0, (Koopman positive constraints)

[ΛKΛ−1]ij ≥ 0, (P− F positive constraints)

ΛKΛ−11 = 1, (P− F Markov constraints)

4) Approximate PF Operator: Use duality of the PF and Koopman Operator to approx-

imate a duality formula between the PF and Koopman matrices. Since, we chose gaussian

radial basis functions, which are positive however not non-overlapping, we need to formulate

inner products of the basis functions. We used Λ for deriving the duality using eq. 3.5.

P = Λ−1K>Λ

We can use an exact formula for obtaining Λ.

5) Disintegrating PF matrix: From the PF matrices, P we reduce 1 row and 1 columns

to obtained reduced PF matrix P 1 for feeding to the linear programming based controller

design. This is done by locating the cell which contains the equilibrium or basis function

which has maximum impact on observables for the equilibrium.

P =



P11 P12 P13 . . . P1N

P21 P22 P23 . . . P2N

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

PN1 PN2 PN3 . . . PNN


Assume in our formulation the first cell contains the equilibrium or the first basis function

center is nearest to the equilibrium. So, we will remove the 1st row and 1st column from PF

matrix to obtain the intended sub-stochastic PF matrix P1.
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P1 =



P22 P23 P24 . . . P2N

P32 P33 P34 . . . P3N

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

PN2 PN3 PN4 . . . PNN


If the equilibrium is located nearest to jth rbf basis function center, we remove jth row and

jth column from P to obtain P1.

6) Solve Linear Program for Stochastic Control: Formulate Linear Program using the PF

matrices P1
a. We have obtained multiple PF matrices, one for each control action ui ∈ Uadm.

Approximate the stochastic controls by solving the following linear program.

min
θ̄a≥0

M∑
a=1

(G1
a)
>θ̄a

s.t.
∑M

a=1[I− γ(P1
a)
>]θ̄a −m = 0

where, P1
a corresponds to sub-stochastic PF matrix for the ath control action. θ̄a ∈ RN is the

vector containing stochastic control action weights or probabilities for each basis function. θ̄ja

corresponds to weight of choosing ath control action for the jth basis function. If we were

to use set oriented approach these control action would represent the probability of choosing

that particular action while in that cell or set.

7) Obtain Deterministic Control: From the stochastic control vectors obtained in step

6 can not be used directly in control design as it gives merely probabilities or weights of

choosing actions for particular cells or basis functions. However, we make the approximation

by choosing the control action having maximum probability or weight for a particular cell or

basis function. One could use alternate approaches of their choice for doing the stochastic to

deterministic approximation.
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Define optimal control for jth cell or basis function as the following

θ̄ja∗ = max{θ̄j1, . . . , θ̄jM}

For jth cell or basis, we chose the action which resulted maximum probability in the opti-

mization problem.

8) Optimal Feedback Control: We store the deterministic control actions corresponding to

each cell or basis function. Final step is to choose control actions online for a particular state.

For a state x, the scalar observable would be ψ(x), and we use that to define the optimal

control using weighted average from each of the basis functions. Therefore, optimal feedback

control to close the loop and stabilize

k(x) =

K∑
j=1

ua(j)ψj(x)

3.3 Set-oriented Stabilization from Known Dynamics Model with Stochastic

Parameters

This approach is similar to what we discussion in section 3.2 with the exception that we no

longer need to learn the model as model is known, however suffers complexity and challenges due

to the addition of stochastic parameters. Therefore, for better readability of the topic, we discussed

this section entirely as a different chapter 5, which again was published as a paper in 2017 American

Control Conference.
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CHAPTER 4. NUMERICAL APPROXIMATION AND SIMULATION

RESULTS

4.1 Finite Dimensional Approximation of Linear Program for Optimal

Stabilization

We have outlined the approach in section 3.2, however for the finite dimensional approximation

of the linear program, one might find this discussion particularly useful before jumping to the

simulations.

The finite dimensional approximation of the P-F operator can be used in the finite dimensional

approximation of the linear program in Eq. (3.2) for optimal stabilization. Towards this goal, we

first discretize the control set U . The control input is quantized and assumed to take only finitely

many control values from the quantized set UM = {u1, . . . , ua, . . . , uM}, where ua ∈ Rd. For each

fixed value of control input u = ua, time-series data {xa1, . . . , xaL} for a = 1, . . . ,M is generated

and the finite dimensional approximation of the P-F operator is constructed using the NSDMD

algorithm outlined in section 3.2. We denote the P-F operator approximated for fixed value of

control input u = ua as Pa. For the finite dimensional approximation of the infinite dimensional

linear program we need to approximate the cost function G and the measure θ. The centers for the

Gaussian radial basis function are generated using K-mean clustering on data set generated from

uncontrolled dynamical system. Let x∗` for ` = 1, . . . ,K be the centers of the Gaussian radial basis

functions. The finite dimensional approximation of the cost function is then expressed as G(x∗` , u
a)

for ` = 1, . . . ,K and a = 1, . . . ,M . Let Ga = [G(x∗1, u
a), . . . , G(x∗K , u

a)]> ∈ RK and θa ∈ RK be

the finite dimensional approximation of measure θ on X × U . The matrix representation of θ has

K rows and M columns i.e., θ ∈ RK×M 1. The (j, a) entry of θ is denoted by θja and we use the

notation θa and θj for the ath column and jth row of θ respectively.

1With some abuse of notations we are denoting both the infinite and finite dimensional representation of θ with
same notation.
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Without loss of generality, we assume that the dictionary function ψ1(x) with center at x∗1

is supported on the equilibrium point or the attractor set that we want to stabilize. Under this

assumption, let P 1
a ∈ R(K−1)×(K−1) be the P-F matrix obtained from Pa after deleting the first row

and first column. Similarly, let θ̄ ∈ R(K−1)×M be the matrix obtained from θ after deleting the first

row. G1
a = [G(x∗2, u

a), . . . , G(x∗K , u
a)]> ∈ RK−1 is the vector obtained by deleting the first entry

from vector Ga. The finite dimensional approximation of the infinite dimensional linear program

(3.2) can then be written as follows:

min
θ̄a≥0

∑M
a=1(G1

a)
>θ̄a,

s.t. γ
∑M

a=1(P 1
a )>θ̄a −

∑M
a=1 θ̄a = −m, ∑a θ̄a = 1, (4.1)

where 1 is a vector of all ones and inequality θ̄a ≥ 0 is element-wise. The optimization problem

(4.1) is a finite dimensional linear program in terms of variable θ1
a. The solution to the optimization

problem in general lead to a stochastic vector θ̄j . The row vector θ̄j has a physical significance. In

particular, θ̄ja determines the probability of choosing the control action a with state corresponding

to the dictionary function ψj(x). But, we are interested in determining deterministic control action

i.e.,

θ̄ja = 1 for exactly one a ∈ {1, . . . ,M}.

However, introducing this binary constraints on the entries of θ̄j in the optimization problem (4.1)

will lead to non-convex formulation which is difficult to solve. Again, we know that deterministic

control action can be obtained from stochastic θ̄j vector Raghunathan and Vaidya (2014). In

particular, following choice of deterministic feedback control can be made from stochastic θ̄j . Let

θ̄ja∗ = max{θ̄j1, . . . , θ̄jM} i.e. a∗ is the index corresponding to the maximum entry from the vector

θ̄j . Then the optimal deterministic feedback control is given by

ua(j) = ua∗.
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At this point, the optimal feedback control k(x) is given by the following formula

k(x) =

K∑
j=1

ua(j)ψj(x). (4.2)

Alternatively, one could use the nearest basis function center to the state to obtain particular

control value for the state.

4.2 Simulation Results

In this section we provide results of the data-driven optimal stabilization algorithm applied into

one-dimensional and two-dimensional continuous and discrete time nonlinear systems. These sys-

tems have stability of different kinds starting for single fixed point, limit cycles to periodic orbits.

Results are obtained using YALMIP with GUROBI solver coded in MATLAB.

Cubic Logistic Map

Controlled equation for cubic logistic map is given as:

xn+1 = λxn − x3
n + un (4.3)

where xn ∈ [−1.6, 1.6] is the state, un is the control input and we chose parameter λ = 2.3. Let,

control input space is quantized to [−0.2 : 0.02 : 0.2]. For the finite dimensional approximation

of the P-F operator, we chose 200 Gaussian radial basis functions as dictionary function with

σ = 0.008. The cost function is assumed to be x2 + u2.
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Figure 4.1: Lyapunov Measure for Cubic Logistic Map

In Fig. 4.1, we provide the Lyapunov measure plot verifying the stability of the closed loop

system. Fig. 4.2 shows two sample trajectories for the open loop and closed loop logistic maps. We

observe that closed-loop trajectories are perfectly stabilized to the only equilibrium point at origin

within few time steps.
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1
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x
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t
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0
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x
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Figure 4.2: Cubic Logistic Map: Open loop and closed loop trajectory

Van der Pol Oscillator

Our second example is that of Van der pol oscillator.

ẋ1 = x2

ẋ2 = (1− x2
1)x2 − x1 − u (4.4)
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The open loop system has stable limit cycle and unstable equilibrium point at the origin. The

objective is to optimally stabilize the unstable equilibrium point at the origin. The control set is

discretized to U = {−16,−14,−12..., 12, 14, 16}. For finite dimension approximation of the transfer

operator we use 200 dictionary functions with σ = 0.2 and X = [−5, 5]× [−5, 5]. In Figs. 4.3 and

4.4, we show the sample open loop and closed loop trajectories along with the plots for the optimal

control inputs and optimal cost. For this particular set of data, we see the trajectories get stabilized

to a point close to the equilibrium at origin. This deviation happens due to the interpolation in

equation 4.2. Considering the fact, we declare a point stabilized if it reaches ε neighborhood of

an equilibrium and remains there for the rest of the time. Choosing different number of basis

functions, N or a different σ, one should be able to reach the target at origin.
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Figure 4.3: Vanderpol Oscillator, sample trajectory 1: a) Open loop and closed loop trajectory;

b) Optimal control and cost function.
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Figure 4.4: Vanderpol Oscillator, sample trajectory 2: a) Open loop and closed loop trajectory; b)

Optimal control and cost function.

Similarly, we simulate all 5000 initial conditions and found out 4667 of them got stabilized

(93.34%) within 200 steps. We observed that most of the trajectories which could not be stabilized,

were initially either in the left most or the right most edges of our phase space. Control values

in those regions were not good enough to optimally stabilize them. This happens because the

dictionary functions can only cover the interior of the phase space as we designed the dictionary

function centers using k-means. If any trajectory ever falls out of that region, that has possibility of

not getting properly mapped control values because, interpolated control values in those parts are

near to zero, which may not be able to get them back to the phase space. Fig. 4.5 shows the plot of

all the initial points whether they were stabilized (yellow) or remained far from the equilibrium at

origin even after 200 steps or 20s simulation (blue). Again, for this example we declare stabilization

if the trajectories reach the circle centered at the origin with radius 0.2 and remains there for the

rest of its time. This is consistent with σ = 0.2 that we chose for the PF approximation from data.
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Figure 4.5: Successful Stabilization of initial conditions

Duffing Oscillator

The control of duffing oscillator is described by following equations

ẋ1 = x2

ẋ2 = (x1 − x3
1)− 0.5x2 + u

(4.5)
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Figure 4.6: Data for approximating transfer operator

The system has unstable equilibrium point at the origin and two stable equilibrium point at

(±1, 0). The objective is to stabilize the unstable equilibrium point at the origin. We consider the
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state space X = [−2, 2] × [−2, 2]. For the finite dimensional approximation we use 100 Gaussian

radial basis function with σ = 0.2. The centers for the radial basis functions are chosen using

K-mean clustering algorithm applied to data set generated for open loop system and as shown in

Fig. 4.6. The control input u is quantized to U = [−4 : 0.5 : 4]. In Figs. 4.7 and 4.8 we show the

plots for the open loop and closed loop trajectories along with optimal cost and control inputs.
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Figure 4.7: Duffing Oscillator, sample trajectory 1: a) Open loop and closed loop trajectory; b)

Optimal cost and control values.
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Figure 4.8: Duffing Oscillator, sample trajectory 2: a) Open loop and closed loop trajectory; b)

Optimal cost and control values.
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We observe that the open loop trajectories are attracted to the stable equilibrium at (−1, 0) or

(1, 0) whereas using the designed control the closed loop trajectories converges to the equilibrium

at origin.

Basin Hopping in a Double Well

ẋ1 = x2

ẋ2 = −x3
1 + ax2

1 + x1 − a+ u (4.6)

For parameter value of a = 0.5, the system has three equilibrium points at (±1, 0) and (a, 0).

The equilibrium points at (±1, 0) are stable and (a, 0) is unstable. The objective is to stabilize the

unstable equilibrium point at (a, 0). Control quantization used for this example is U = [−2 : 0.2 : 2].

For the finite dimension approximation, we construct 100 Gaussian radial basis functions with

σ = 0.22. Using the designed control, the intended unstable equilibrium was successfully stabilized

for almost all the initial conditions. In figures 4.9 and 4.10, we compare the open loop and close

loop sample trajectories starting from two different initial conditions and corresponding optimal

cost and control inputs.
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Figure 4.9: Basin Hopping Double Well, sample trajectory 1: a) Open-loop and closed-loop

trajectory; b) Optimal cost and control inputs.
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Figure 4.10: Basin Hopping Double Well, sample trajectory 2: a) Open loop and closed loop

trajectory; b) Optimal cost and control inputs.

Standard Map

xn+1 = xn + yn +Ku sin 2πxn ( mod 1)

yn+1 = yn +Ku sin 2πxn (4.7)

Standard Map is one of the classical example of system exhibiting complex dynamics. The

states of the standard map are canonical action-angle coordinates and they arise as a discretization

of 11
2 degree of freedom Hamiltonian system. Control of standard maps are studied in Vaidya and

Mezić (2004). For the uncontrolled standard map the entire state space (x, y) ∈ [0, 1] × [0, 1] is

foliated with periodic and quasi periodic motion. The control objective is to stabilize the period 2

orbit located at (0.25, 0.5) and (0.75, 0.5). The parameter value of K is chosen to be equal to 0.25.

Control is quantized to U = [−0.5 : 0.02 : 0.5].
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Figure 4.11: Period 2-orbit stabilization for Standard Map: sample trajectory 1
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Figure 4.12: Standard Map, sample trajectory 2 and control

Open loop and closed loop control trajectories for the stabilization of period two orbit is shown

in Fig. 4.11 and 4.12. For the sample initial point in Fig. 4.12a we observe excellent stabilization

with corresponding optimal control values depicted in Fig. 4.12b.



www.manaraa.com

37

0 0.2 0.4 0.6 0.8 1
x

0.45

0.5

0.55

y

Open
Closed

(a) Sample trajectory

0 20 40 60 80
t

-0.02

0

0.02

u

(b) Control values

Figure 4.13: Standard Map, sample trajectory 3 and control

In Fig. 4.14a,we observe that along the x direction the system trajectory toggle between two

points x = 0.25 and x = 0.75 and along y axis the trajectory stabilize to y = 0.5. This is exactly

what we ask for and thereby standard map period 2 orbits were stabilized perfectly.
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Figure 4.14: Standard Map, sample trajectory 4 and control

On a simulation of 5000 randomly chosen initial conditions, we chose 200 Gaussian radial basis

functions for finite dimensional approximation, with σ = 0.02. This led approximately 93% of the

trajectories to stabilization (captured within threshold distance of 0.05 from our intended period-2

orbits).
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CHAPTER 5. OPTIMAL STABILIZATION OF STOCHASTIC SYSTEMS

FROM KNOWN DYNAMICS

A paper accepted by American Control Conference 2017

Apurba Kumar Das, Arvind Raghunathan, Umesh Vaidya

5.1 Abstract

In this paper, we develop linear transfer Perron-Frobenius operator-based approach for optimal

stabilization of stochastic nonlinear systems. One of the main highlights of the proposed transfer

operator based approach is that both the theory and computational framework developed for the

optimal stabilization of deterministic dynamical systems in Raghunathan and Vaidya (2014) carries

over to the stochastic case with little change. The optimal stabilization problem is formulated as

an infinite-dimensional linear program. Set oriented numerical methods are proposed for the finite-

dimensional approximation of the transfer operator and the controller. Simulation results are

presented to verify the developed framework.

5.2 Introduction

Transfer operator-based methods have attracted lot of attention lately for problems involving

dynamical systems analysis and design. In particular, transfer operator-based methods are used for

identifying steady state dynamics of the system from the invariant measure of transfer operator,

identifying almost invariant sets, and coherent structures Dellnitz and Junge (2002); Froyland and

Dellnitz (2003); Froyland and Padberg (2009). The spectral analysis of transfer operators are also

applied for reduced order modeling of dynamical systems with applications to building systems,

power grid, and fluid mechanics Mehta and Vaidya (2005); Budǐsić et al. (2012). Operator-theoretic

methods have also been successfully applied to address design problems in control dynamical sys-
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tems. In particular, transfer operator methods are used for almost everywhere stability verification,

control design, nonlinear estimation, and for solving optimal sensor placement problem Surana and

Banaszuk (2016); Raghunathan and Vaidya (2014); Vaidya and Mehta (2008); Rajaram et al.

(2010); Vaidya et al. (2010); Vaidya (2007b); Sinha et al. (2016).

In this paper, we continue with the long series of work on the application of transfer operator

methods for stability verification and stabilization of nonlinear systems. We develop an analytical

and computational framework for the application of transfer operator methods for the stabilization

of stochastic nonlinear systems. In Vaidya (2015), we introduced Lyapunov measure for stability

verification of stochastic nonlinear systems. We proved that the existence of the Lyapunov mea-

sure verifies weaker set-theoretic notion of almost everywhere stochastic stability for discrete-time

stochastic systems. Weaker notion of almost everywhere stability was introduced in Rantzer (2001)

for continuous time deterministic systems and in Van Handel (2006) for continuous time stochastic

systems. In this paper we extend the application of Lyapunov measure for optimal stabilization

of stochastic nonlinear systems. Optimal stabilization of stochastic systems is posed as an infinite

dimensional linear program. Set-oriented numerical methods are used for the finite dimensional

approximation of the transfer operator and the linear program. A key advantage of the proposed

transfer operator-based approach for stochastic stability analysis and controller synthesis is that all

the stability results along with the computation framework carries over from the deterministic sys-

tems Surana and Banaszuk (2016); Raghunathan and Vaidya (2014) to the stochastic systems. The

only difference in the stochastic setting is that the transfer Perron-Frobenius operator is defined

for the stochastic system.

The results developed in this paper draw parallels from following papers. Lasserre, Hernndez-

Lerma, and co-workers Hernández-Lerma and Lasserre (1996, 1998) formulated the control of

Markov processes as a solution of the HJB equation. In Hernandez-Hernandez et al. (1996); Lasserre

et al. (2005); Gaitsgory and Rossomakhine (2006), solutions to stochastic and deterministic optimal

control problems are proposed, using a linear programming approach or using a sequence of LMI

relaxations. Our paper also draws some connection to research on optimization and stabilization
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of controlled Markov chains discussed in Meyn (1999). Computational techniques based on the

viscosity solution of the HJB equation is proposed for the approximation of the value function and

optimal controls in Bardi and Capuzzo-Dolcetta (1997) [Chapter VI].

Our proposed method, in particular the computational approach, draws some similarity with the

above discussed references on the approximation of the solution of the HJB equation Crespo and Sun

(2000); Junge and Osinga (2004a); Bardi and Capuzzo-Dolcetta (1997); Grüne and Junge (2005).

Our method, too, relies on discretization of state space to obtain globally optimal stabilizing control.

However, our proposed approach differs from the above references in the following two fundamental

ways. The first main difference arises due to adoption of non-classical weaker set-theoretic notion

of almost everywhere stability for optimal stabilization. The second main difference compared to

references Meyn (1999) and Bardi and Capuzzo-Dolcetta (1997) is in the use of the discount factor

γ > 1 in the cost function. The discount factor plays an important role in controlling the effect of

finite dimensional discretization or the approximation process on the true solution. In particular,

by allowing for the discount factor γ to be greater than one, it is possible to ensure that the control

obtained using the finite dimensional approximation is truly stabilizing for the nonlinear system

Rajaram et al. (2010); Vaidya (2007a).

The paper is organized as follows. In section 2 we present brief overview of results from Vaidya

(2015) on Lyapunov measure for stochastic stabilization. In section 5.3 results on application of

Lyapunov measure for optimal stabilization are presented. In section 5.5, computational frame-

work based on set-oriented numerical methods for finite dimensional approximation of Lyapunov

measure and optimal control is presented. Simulation results are presented in section 5.6 followed

by conclusions in section 5.7.

5.3 Lyapunov Measure for Stochastic Stability Analysis

Consider the discrete-time stochastic dynamical system,

xn+1 = T (xn, ξn), (5.1)
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where xn ∈ X ⊂ Rd is a compact set. The random vectors, ξ0, ξ1, . . ., are assumed independent

identically distributed (i.i.d) and takes values in W with the following probability distribution,

Prob(ξn ∈ B) = v(B), ∀n, B ⊂W,

and is the same for all n and v is the probability measure. The system mapping T (x, ξ) is assumed

continuous in x and for every fixed x ∈ X, it is measurable in ξ. The initial condition, x0, and

the sequence of random vectors, ξ0, ξ1, . . ., are assumed independent. The basic object of study in

our proposed approach to stochastic stability is a linear transfer, the Perron-Frobenius operator,

defined as follows:

Definition 13 (Perron-Frobenius (P-F) operator) Let M(X) be the space of finite measures

on X. The Perron-Frobenius operator, P : M(X) → M(X), corresponding to the stochastic

dynamical system (5.1) is given by

[PTµ](A) =

∫
X

{∫
W
χA(T (x, y))dv(y)

}
dµ(x)

= Eξ

[
µ(T−1

ξ (A))
]
, (5.2)

for µ ∈M(X), and A ∈ B(X), where χA(x) is an indicator function of set A.

Assumption 14 We assume x = 0 is an equilibrium point of system (5.1), i.e., T (0, ξn) = 0, ∀n,

for any given sequence of random vectors {ξn} taking values in set W .

Assumption 15 (Local Stability) We assume the trivial solution, x = 0, is locally stochastic,

asymptotically stable. In particular, we assume there exists a neighborhood O of x = 0, such that

for all x0 ∈ O,

Prob{Tn(x0, ξ
n
0 ) ∈ O} = 1, ∀n ≥ 0,

and

Prob{ lim
n→∞

Tn(x0, ξ
n
0 ) = 0} = 1.
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Assumption 14 is used in the decomposition of the P-F operator in section (5.3.1) and Assumption

15 is used in the proof of Theorem (20). In the following, we will use the notation U(ε) to denote

the ε neighborhood of the origin for any positive value of ε > 0. We have 0 ∈ U(ε) ⊂ O.

We introduce the following definitions for stability of stochastic dynamical systems (5.1).

Definition 16 (a.e. stochastic stable with geometric decay) For any given ε > 0, let U(ε)

be the ε neighborhood of the equilibrium point, x = 0. The equilibrium point, x = 0, is said

to be almost everywhere, almost sure stable with geometric decay with respect to finite measure,

m ∈M(X), if there exists 0 < α(ε) < 1, 0 < β < 1, and K(ε) <∞, such that

m{x ∈ X : Prob{Tn(x, ξn0 ) ∈ B} ≥ αn} ≤ Kβn,

for all sets B ∈ B(X \ U(ε)), such that m(B) > 0.

We introduce the following definition of absolutely continuous and equivalent measures.

Definition 17 (Absolutely continuous measure) A measure µ is absolutely continuous with

respect to another measure, ϑ denoted as µ ≺ ϑ, if µ(B) = 0 for all B ∈ B(X) with ϑ(B) = 0.

Definition 18 (Equivalent measure) The two measures, µ and ϑ, are equivalent (µ ≈ ϑ) pro-

vided µ(B) = 0, if and only if ϑ(B) = 0 for B ∈ B(X).

5.3.1 Decomposition of the P-F operator

Let E = {0}. Hence, Ec = X \ E. We write T : E ∪ Ec ×W → X. For any set B ∈ B(Ec), we

can write

[PTµ](B) =

∫
X

∫
W
χB(T (x, y))dv(y)dµ(x)

=

∫
Ec

∫
W
χB(T (x, y))dv(y)dµ(x). (5.3)

This is because T (x, ξ) ∈ B implies x /∈ E. Since set E is invariant, we define the restriction of the

P-F operator on the complement set Ec. Thus, we can define the restriction of the P-F operator



www.manaraa.com

43

on the measure space M(Ec) as follows:

[P1
Tµ](B) =

∫
Ec

∫
W
χB(T (x, y))dv(y)dµ(x),

for any set B ∈ B(Ec) and µ ∈M(Ec).

Next, the restriction T : E ×W → E can also be used to define a P-F operator denoted by

[P0
Tµ](B) =

∫
B
χB(T (x, y))dv(y)dµ(x),

where µ ∈M(E) and B ⊂ B(E).

The above considerations suggest a representation of the P-F operator, P, in terms of P0 and

P1. Indeed, this is the case, if one considers a splitting of the measured space,

M(X) =M0 ⊕M1, (5.4)

where M0 :=M(E), M1 :=M(Ec), and ⊕ stands for direct sum.

Then it follows the splitting defined by Eq. (5.4), the P-F operator has a lower-triangular matrix

representation given by

PT =

 P0
T 0

× P1
T

 . (5.5)

Let ξn0 = {ξ0, . . . , ξn} ∈ W × . . .×W︸ ︷︷ ︸
n

=: Wn and F (x, ξn0 ) := Tn(x, ξn0 ) : X ×Wn → X be the

notation for the n times composition of the map T : X×W → X. Then, it is easy to show that the

Perron-Frobenius operator, PF :M(X)→M(X), corresponding to system mapping F is given by

PF = PTPT . . .PT︸ ︷︷ ︸
n

=: PnT .

Using the lower triangular structure of the P-F operator in Eq. (5.5), one can write the PnT as

follows:

PnT =

 [P0
T ]n 0

× [P1
T ]n

 . (5.6)

Following is the definition of Lyapunov measure introduced for almost everywhere stability

verification of a stochastic system.
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Definition 19 (Lyapunov measure) A Lyapunov measure, µ̄ ∈M(X \U(ε)), is defined as any

positive measure finite outside the ε neighborhood of equilibrium point and satisfies

[P1
T µ̄](B) < γµ̄(B) (5.7)

for 0 < γ ≤ 1 and for all sets B ∈ B(X \ U(ε)).

The following theorem from Vaidya (2007a) provides the condition for a.e. stability with geo-

metric decay.

Theorem 20 An attractor set A for the stochastic dynamical system (5.1) is a.e. stochastic stable

with geometric decay (Definition 16) with respect to finite measure m, if and only if for all ε > 0

there exists a non-negative measure µ̄ which is finite on B(X \ U(ε)) and satisfies

γ[P1
T µ̄](B)− µ̄(B) = −m(B) (5.8)

for all measurable sets B ⊂ X \ U(ε) and for some γ > 1.

Proof 21 Proof for this theorem follows similar as its deterministic counterpart Raghunathan and

Vaidya (2014).

5.4 Lyapunov Measure for Optimal Stabilization

We consider the stabilization of stochastic dynamical systems of the form

xn+1 = T (xn, un, ξn) = Tξn(xn, un)

where xn ∈ X ⊂ Rq are the state, un ∈ U ⊂ Rd is the control input, and ξn ∈ W ⊂ Rp is

random variable. The sequence of random variable ξ0, ξ1, . . . are assumed to independent identically

distributed (i.i.d.) with following statistics

Prob{ξn ∈ B} = v(B), ∀n, B ⊂W

where v is the probability measure. For each fixed value of ξ the mapping Tξ : X × U → X is

assumed to be continuous in x and u and for every fixed values of x and u it is measurable in ξ.
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Both X and U are assumed compact. The objective is to design a deterministic feedback controller,

un = K(xn), to optimally stabilize the attractor set A.

We define the feedback control mapping C : X → Y := X ×U as C(x) = (x,K(x)). We denote

by B(Y ) the Borel-σ algebra on Y and M(Y ) the vector space of real valued measures on B(Y ).

For any µ ∈M(X), the control mapping C can be used to define a measure, θ ∈M(Y ), as follows:

θ(D) := [PCµ](D) = µ(C−1(D))

[PC−1θ](B) := µ(B) = θ(C(B)), (5.9)

for all sets D ∈ B(Y ) and B ∈ B(X). Since C is an injective function with θ satisfying (5.9),

it follows from the theorem on disintegration of measure Furstenberg (1981) (Theorem 5.8) there

exists a unique disintegration θx of the measure θ for µ almost all x ∈ X, such that
∫
Y f(y)dθ(y) =∫

X

∫
C(x) f(y)dθx(y)dµ(x), for any Borel-measurable function f : Y → R. In particular, for f(y) =

χD(y), the indicator function for the set D, we obtain θ(D) =
∫
X

∫
C(x) χD(y)dθx(y)dµ(x) =

[PCµ](D). Using the definition of the feedback controller mapping C, we write the feedback control

system as

xn+1 = T (xn,K(xn), ξn) = T (C(xn), ξn) =: Tξn ◦ C(xn)

The system mapping T : Y ×W → X can be associated with P-F operators PT :M(Y )→M(X)

as

[PT θ](B) =

∫
Y

{∫
W
χB(T (y, ξ))dv(ξ)

}
dθ(y).

For the feedback control system Tξ ◦C : X×W → X, the P-F operator can be written as a product

of PTξ and PC . In particular, we obtain Raghunathan and Vaidya (2012)

[PTξ◦Cµ](B) =

∫
Y

{∫
W
χB(T (y, ξ))dv(ξ)

}
d[PCµ](y)

= [PTPCµ](B) =

∫
X

∫
C(x)

{∫
W
χB(T (y, ξ))dv(ξ)

}
dθx(y)dµ(x).

The P-F operators, PT and PC, are used to define their restriction, P1
T :M(Ac×U)→M(Ac),

and P1
C : M(Ac) → M(Ac × U) to the complement of the attractor set, respectively, in a way

similar to Eq. (5.3.1).
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We define X1 := X \ U(ε).

Assumption 22 We assume there exists a feedback controller mapping C0(x) = (x,K0(x)), which

locally stabilizes the invariant set A, i.e., there exists a neighborhood V of A such that T ◦C0(V ) ⊂ V

and xn → A for all x0 ∈ V ; moreover A ⊂ U(ε) ⊂ V .

Our objective is to construct the optimal stabilizing controller for almost every initial condition

starting from X1. Let C1 : X1 → Y be the stabilizing control map for X1. The control mapping

C : X → X × U can be written as follows:

C(x) =

 C0(x) = (x,K0(x)) for x ∈ U(ε)

C1(x) = (x,K1(x)) for x ∈ X1.
(5.10)

Furthermore, we assume the feedback control system Tξ ◦ C : X → X is non-singular with

respect to the Lebesgue measure, m for fixed value of ξ. We seek to design the controller mapping,

C(x) = (x,K(x)), such that the attractor set A is a.e. stable with geometric decay rate β < 1,

while minimizing the following cost function,

CC(B) =

∫
B

∞∑
n=0

γnEξn0 [G(C(xn), ξn)]dm(x), (5.11)

where x0 = x, the cost function G : X × U ×W → R is assumed a continuous non-negative real-

valued function for each fixed value of ξ and is assumed to be measurable w.r.t. ξ for fixed value of

x and u. Furthermore, G(A, 0, ξ) = 0 for all ξ, xn+1 = Tξ ◦C(xn), and 0 < γ < 1
β . The expectation

Eξn0 in (5.11) denotes expectation over the sequence of random variable {ξ0, ξ1, . . . , ξn} and using

the i.i.d. property of the sequence of random variable are taken with respect to product probability

measure dv . . . , dv︸ ︷︷ ︸
n+1

. Note, that in the cost function (5.11), γ is allowed greater than one and this is

one of the main departures from the conventional optimal control problem, where γ ≤ 1. However,

under the assumption that the controller mapping C renders the attractor set a.e. stable with a

geometric decay rate, β < 1
γ , the cost function (5.11) is finite.

Remark 23 To simplify the notation, in the following we will use the notion of the scalar product

between continuous function h ∈ C0(X) and measure µ ∈ M(X) as 〈h, dµ〉X :=
∫
X h(x)dµ(x)

Lasota and Mackey (1994).
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The following theorem proves the cost of stabilization of the set A as given in Eq. (5.11) can be

expressed using the control Lyapunov measure equation.

Theorem 24 Let the controller mapping, C(x) = (x,K(x)), be such that the attractor set A for

the feedback control system Tξ ◦ C : X → X is a.e. stable with geometric decay rate β < 1. Then,

the cost function (5.11) is well defined for γ < 1
β and, furthermore, the cost of stabilization of the

attractor set A with respect to Lebesgue almost every initial condition starting from set B ∈ B(X1)

can be expressed as follows:

CC(B) =

∫
B

∞∑
n=0

γnEξn0 [G(C(xn), ξn)]dm(x)

=

∫
Ac×U×W

G(y, ξ)d[P1
C µ̄B](y)dv(ξ)

=
〈
G, dP1

C µ̄Bdv
〉
Ac×U×W , (5.12)

where, x0 = x and µ̄B is the solution of the following control Lyapunov measure equation,

γ[P1
T · P1

C µ̄B](D)− µ̄B(D) = −mB(D), (5.13)

for all D ∈ B(X1) and where mB(·) := m(B∩·) is a finite measure supported on the set B ∈ B(X1).

Proof 25

By appropriately selecting the measure on the right-hand side of the control Lyapunov measure

equation (5.13) (i.e., mB), stabilization of the attractor set with respect to a.e. initial conditions

starting from a particular set can be studied. The minimum cost of stabilization is defined as the

minimum over all a.e. stabilizing controller mappings, C, with a geometric decay as follows:

C∗(B) = min
C
CC(B). (5.14)

Next, we write the infinite dimensional linear program for the optimal stabilization of the attractor

set A. Towards this goal, we first define the projection map, P1 : Ac×U → Ac as: P1(x, u) = x, and
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denote the P-F operator corresponding to P1 as PP1 :M(Ac×U)→M(Ac), which can be written

as [P1
P1
θ](D) =

∫
Ac×U χD(P1(y))dθ(y) =

∫
D×U dθ(y) = µ(D). Using this definition of projection

mapping, P1, and the corresponding P-F operator, we can write the linear program for the optimal

stabilization of set B with unknown variable θ as follows:

min
θ≥0
〈G, dθdv〉Ac×U×W , s.t. γ[P1

T θ](D)− [P1
P1
θ](D) = −mB(D), (5.15)

for D ∈ B(X1).

Remark 26 Observe the geometric decay parameter satisfies γ > 1. This is in contrast to most

optimization problems studied in the context of Markov-controlled processes, such as in Lasserre

and Hernández-Lerma Hernández-Lerma and Lasserre (1996). Average cost and discounted cost

optimality problems are considered in Hernández-Lerma and Lasserre (1996); Bardi and Capuzzo-

Dolcetta (1997). The additional flexibility provided by γ > 1 guarantees the controller obtained

from the finite dimensional approximation of the infinite dimensional program (5.15) also stabilizes

the attractor set for system (5.4). For a more detailed discussion on the role of γ on the finite

dimensional approximation, we refer readers to the online version of the paper Raghunathan and

Vaidya (2012).

5.5 Computational Approach

We discretize the state-space and control space for the purposes of computations as described

below. Borrowing the notation from Vaidya et al. (2010), let XN := {D1, ..., Di, ..., DN} denote a

finite partition of the state-spaceX ⊂ Rq. The measure space associated with XN is RN . We assume

without loss of generality that the attractor set, A, is contained in DN , that is, A ⊆ DN . The

control space, U , is quantized and the control input is assumed to take only finitely many control

values from the quantized set, UM = {u1, . . . , ua, . . . , uM}, where ua ∈ Rd. The partition, UM , is

identified with the vector space, Rd×M . Similarly, the space of uncertainty, W , and the probability

measure v is quantized and are assumed to take only finitely many valuesW = {ξ1, . . . , ξ`, . . . , ξL},

and ϑ = {v1, . . . , v`, . . . , vL} where ξ` ∈ Rp and 0 ≤ v` ≤ 1 for all ` and
∑L

`=1 v
` = 1. The discrete
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probability measure on the finite dimensional uncertainty space is assigned as follows:

Prob{ξn = ξ`} = v`, ∀n, ` = 1, . . . , L.

The space of uncertainty is identified with finite dimensional space Rp×L. The system map that

results from choosing the controls u = ua and uncertainty value ξ = ξ` is denoted by Tua,ξ` and the

corresponding P-F operator is denoted as PT
ua,ξ`

∈ RN×N . Note that for system mapping Tua,ξ` ,

the control on all sets of the partition is u(Di) = ua, for all Di ∈ XN . For brevity of notation, we

will denote the P-F matrix PT
ua,ξ`

by PTa,` and its entries are calculated as

(PTa,`)(ij) :=
m(T−1

ua,ξ`
(Dj) ∩Di)

m(Di)
,

where m is the Lebesgue measure and (PTa,`)(ij) denotes the (i, j)-th entry of the matrix. Since

Tua,ξ` : X → X, we have PTa,` is a Markov matrix. Additionally, P 1
Ta,`

: RN−1 → RN−1 will denote

the finite dimensional counterpart of the P-F operator restricted to XN \DN , the complement of

the attractor set. It is easily seen that P 1
Ta,`

consists of the first (N − 1) rows and columns of PTa,` .

In Vaidya and Mehta (2008) and Vaidya et al. (2010), stability analysis and stabilization of the

attractor set are studied, using the above finite dimensional approximation of the P-F operator.

The finite dimensional approximation of the P-F operator results in a weaker notion of stability,

referred to as coarse stability Vaidya and Mehta (2008); Raghunathan and Vaidya (2012). Roughly

speaking, coarse stability means stability modulo attractor sets with domain of attraction smaller

than the size of cells within the partition.

With the above quantization of the control space and partition of the state space, the deter-

mination of the control u(x) ∈ U (or equivalently K(x)) for all x ∈ Ac has now been cast as a

problem of choosing uN (Di) ∈ UM for all sets Di ⊂ XN .
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The finite dimensional approximation of the optimal stabilization problem (5.15) is equivalent

to solving the following finite-dimensional LP:

min
θa,µ≥0

M∑
a=1

[
L∑
`=1

v`(Ga,`)
′

]
θa,

s.t. γ

M∑
a=1

[
L∑
`=1

v`(PTa,`)
′

]
θa −

M∑
a=1

θa = −m, (5.16)

where we have used the notation (·)′ for the transpose operation, m ∈ RN−1 and (m)(j) > 0 denote

the support of Lebesgue measure, m, on the set Dj , G
a,` ∈ RN−1 is the cost defined on XN \DN

with (Ga,`)(j) the cost associated with using control action ua on set Dj with uncertainty value

ξn = ξ`; θa ∈ RN−1 are, respectively, the discrete counter-parts of infinite-dimensional measure

quantities in (5.15). We define following quantities

Ga :=
L∑
`=1

v`Ga,`, PTa :=
L∑
`=1

v`PTa,`

to rewrite finite-dimensional LP (5.16) as follows:

min
θa,µ≥0

M∑
a=1

(Ga)
′
θa, s.t. γ

M∑
a=1

(PTa)
′
θa −

M∑
a=1

θa = −m, (5.17)

In the LP (5.17), we have not enforced the constraint,

(θa)(j) > 0 for exactly one a ∈ {1, ...,M}, (5.18)

for each j = 1, ..., (N − 1). The above constraint ensures the control on each set in unique. We

prove in the following the uniqueness can be ensured without enforcing the constraint, provided the

LP (5.17) has a solution. To this end, we introduce the dual LP associated with the LP in (5.17).

The dual to the LP in (5.17) is,

max
V

m
′
V, s.t. V ≤ γP 1

TaV +Ga ∀a = 1, ...,M. (5.19)

In the above LP (5.19), V is the dual variable to the equality constraints in (5.17).
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5.5.1 Existence of solutions to the finite LP

We make the following assumption throughout this section.

Assumption 27 There exists θa ∈ RN−1 ∀ a = 1, . . . ,M , such that the LP in (5.17) is feasible

for some γ > 1.

Note, Assumption 27 does not impose the requirement in (5.18). For the sake of simplicity and

clarity of presentation, we will assume that the measure, m, in (5.17) is equivalent to the Lebesgue

measure and G > 0. Satisfaction of Assumption 27 can be verified using the following algorithm.

Algorithm 1 1) Set I := 1, ..., N − 1, I0 := N , L = 0. 2) Set IL+1 := ∅. 3) For each i ∈

I \{I0∪ . . .∪IL} do a) Pick the smallest a ∈ 1, ...,M such that (PTa)(ij) > 0 for some j ∈ IL. b)

If a exists then, set uN (Di) := ua, IL+1 := IL+1 ∪ {i}. 4) End For 5) If I0 ∪ . . .∪ IL = I then,

set L = L+ 1. STOP. 6) If IL+1 = ∅ then, STOP. 7) Set L = L+ 1. Go to Step 2.

The algorithm iteratively adds to IL+1, set Di, which has a non-zero probability of transition

to any of the sets in IL. In graph theory terms, the above algorithm iteratively builds a tree

starting with the set DN ⊇ A. If the algorithm terminates in Step 6, then we have identified sets

I \ {I0 ∪ . . . ∪ IL} that cannot be stabilized with the controls in UM . If the algorithm terminates

at Step 5, then we show in the Lemma below that a set of stabilizing controls exist.

Lemma 28 Let XN = {D1, . . . , Dn} be a partition of the state space, X, and UM = {u1, . . . , uM}

be a quantization of the control space, U . Suppose Algorithm 1 terminates in Step 5 after Lmax

iterations, then the controls uN identified by the algorithm renders the system coarse stable.

Proof 29 Let PTuN represent the closed loop transition matrix resulting from the controls identified

by Algorithm 1. Suppose µ ∈ RN−1, µ ≥ 0, µ 6= 0 be any initial distribution supported on the

complement of the attractor set XN \DN . By construction, µ has a non-zero probability of entering

the attractor set after Lmax transitions. Hence,

N−1∑
i=1

(µ′(P 1
TuN

)L
max

)(i) <
N−1∑
i=1

(µ)(i) =⇒ lim
n→∞

(P 1
TuN

)nL
max −→ 0.

Thus, the sub-Markov matrix P 1
TuN

is transient and implies the claim.
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Algorithm 1 is less expensive than the approaches proposed in Vaidya et al. (2010), where a

mixed integer LP and a nonlinear programming approach were proposed. The strength of our

algorithm is that it is guaranteed to find deterministic stabilizing controls, if they exist. The

following lemma shows an optimal solution to (5.17) exists under Assumption 27.

Lemma 30 Consider a partition XN = {D1, . . . , DN} of the state-space X with attractor set A ⊆

DN and a quantization UM = {u1, . . . , uM} of the control space U . Suppose Assumption 27 holds

for some γ > 1 and for m,G > 0. Then, there exists an optimal solution, θ, to the LP (5.17) and

an optimal solution, V , to the dual LP (5.19) with equal objective values, (
M∑
a=1

(Ga)
′
θa = m′V ) and

θ, V bounded.

Proof 31 From Assumption 27, the LP (5.17) is feasible. Observe the dual LP in (5.19) is always

feasible with a choice of V = 0. The feasibility of primal and dual linear programs implies the claim

as a result of LP strong duality Mangasarian (1994).

Remark 32 Note, existence of an optimal solution does not impose a positivity requirement on the

cost function, G. In fact, even assigning G = 0 allows determination of a stabilizing control from

the Lyapunov measure equation (5.17). In this case, any feasible solution to (5.17) suffices.

The next result shows the LP (5.17) always admits an optimal solution satisfying (5.18).

Lemma 33 Given a partition XN = {D1, . . . , DN} of the state-space, X, with attractor set, A ⊆

DN , and a quantization, UM = {u1, . . . , uM}, of the control space, U . Suppose Assumption 27

holds for some γ > 1 and for m,G > 0. Then, there exists a solution θ ∈ RN−1 solving (5.17) and

V ∈ RN−1 solving (5.19) for any γ ∈ [1, γN ). Further, the following hold at the solution: 1) For each

j = 1, ..., (N − 1), there exists at least one aj ∈ 1, ...,M , such that (V )(j) = γ(P 1
Taj
V )(j) + (Gaj )(j)

and (θaj )(j) > 0. 2) There exists a θ̃ that solves (5.17), such that for each j = 1, ..., (N − 1), there

is exactly one aj ∈ 1, ...,M , such that (θ̃aj )(j) > 0 and (θ̃a
′
)(j) = 0 for a′ 6= aj.

Proof 34 From the assumptions, we have that Lemma 30 holds. Hence, there exists θ ∈ RN−1

solving (5.17) and V ∈ RN−1 solving (5.19) for any γ ∈ [1, γN ). Further, θ and V satisfy following
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the first-order optimality conditions Mangasarian (1994),

M∑
a=1

θa − γ
M∑
a=1

(P 1
Ta

)′θa = m

V ≤ γP 1
Ta
V +Ga ⊥ θa ≥ 0 ∀a = 1, ...,M.

(5.20)

We will prove each of the claims in order.

Claim 1: Suppose, there exists j ∈ 1, ..., (N − 1), such that (θa)(j) = 0 for all a = 1, ...,M .

Substituting in the optimality conditions (5.20), one obtains,

γ

M∑
a=1

((P 1
Ta)′θa)(j) = −(m)(j)

which cannot hold, since, P 1
Ta

has non-negative entries, γ > 0 and θa ≥ 0. Hence, there exists

at least one aj such that (θaj )(j) > 0. The complementarity condition in (5.20) then requires that

(V )(j) = (γP 1
Taj
V )(j) + (Gaj )(j). This proves the first claim.

Claim 2: Denote a(j) = min{a|(θa)(j) > 0} for each j = 1, ..., (N − 1). The existence of a(j)

for each j follows from statement 1. Define P 1
Tu
∈ R(N−1)×(N−1) and Gu ∈ RN−1 as follows:

(P 1
Tu

)(ji) := (P 1
Ta(j)

)(ji) ∀i = 1, ..., (N − 1)

(Gu)(j) := (Ga(j))(j)

(5.21)

for all j = 1, ..., (N − 1). From the definition of P 1
Tu

, Gu and the complementarity condition in

(5.20), it is easily seen that V satisfies

V = γP 1
TuV +Gu = lim

n→∞
((γP 1

Tu)nV +
n∑
k=0

(γP 1
Tu)kGu). (5.22)

Since V is bounded and Gu > 0, it follows that ρ(P 1
Tu

) < 1/γ. Define θ̃ as,
(θ̃a(1))(1)

...

(θ̃a(N−1))(N−1)

 = (IN−1 − γ(P 1
Tu)
′
)−1m (5.23a)

(θ̃a)(j) = 0 ∀j = 1, ..., (N − 1), a 6= a(j). (5.23b)

The above is well-defined, since we have already shown that ρ(P 1
Tu

) < 1/γ.
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From the construction of θ̃, we have that for each j there exists only one aj, namely a(j), for

which (θ̃a(j))(j) > 0. It remains to show that θ̃ solves (5.17). For this, observe

M∑
a=1

(Ga)
′
θ̃a

(5.23b)
=

N−1∑
j=1

(G
a(j)
j θ̃a(j))(j)

(5.23a)
= (Gu)

′
(IN−1 − γ(P 1

Tu
)
′
)−1m

= ((IN−1 − γP 1
Tu

)−1Gu)
′
m

(5.22)
= V

′
m.

(5.24)

The primal and dual objectives are equal with the above definition of θ̃. Hence, θ̃ solves (5.17). The

claim is proved.

The following theorem states the main result.

Theorem 35 Consider a partition XN = {D1, . . . , DN} of the state-space, X, with attractor set,

A ⊆ DN , and a quantization, UM = {u1, . . . , uM}, of the control space, U . Suppose Assumption

27 holds for some γ > 1 and for m,G > 0. Then, the following statements hold: 1) there exists

a bounded θ, a solution to (5.17) and a bounded V , a solution to (5.19); 2) the optimal control

for each set, j = 1, ..., (N − 1), is given by u(Dj) = ua(j), where a(j) := min{a|(θa)(j) > 0}; 3)

µ satisfying γ(P 1
Tu

)
′
µ − µ = −m , where (P 1

Tu
)(ji) = (P 1

Ta(j)
)(ji) is the Lyapunov measure for the

controlled system.

Proof 36 Assumption 27 ensures that the linear programs (5.17) and (5.19) have a finite optimal

solution (Lemma (30)). This proves the first claim of the theorem and also allows the applicability

of Lemma 33. The remaining claims follow as a consequence.

Although the results in this section assumed the measure, m, is equivalent to Lebesgue, this

can be easily relaxed to the case where m is absolutely continuous with respect to Lebesgue and is

of interest where the system is not everywhere stabilizable. If it is known there are regions of the

state-space not stabilizable, then m can be chosen such that its support is zero on these regions.

If the regions are not known a priori then, (5.17) can be modified to minimize the l1-norm of the

constraint residuals. This is similar to the feasibility phase commonly employed in LP algorithms

Wright (1997).
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5.6 Numerical Implementation

5.6.1 Stochastic damping in system

5.6.1.1 Inverted Pendulum on a cart:

ẋ1 = x2

ẋ2 =
a sin (x1)− 0.5mrx

2
2 sin (2x1)− b cos (x1)u

1.33−mr cos2 (x1)
− 2ζ

√
ax2 (5.25)

where g = 9.8, l = 0.5,m = 2,M = 8, ζ = 0,mr =
m

(m+M)
, a =

g

l
, b =

mr

ml
. The cost function

is assumed to be G(x, u) = x2
1 + x2

2 + u2. The damping parameter ζ is assumed to be random

and uniformly distributed with mean zero and uniformly supported on the interval [−σ, σ]. For

uncontrolled system, u = 0, there are two equilibrium points, one equilibrium point at (π, 0) is stable

in Lyapunov sense with eigenvalues of linearization on the jω axis, the second equilibrium point at

the origin is a saddle and unstable. The objective is to optimally stabilize the saddle equilibrium

point at the origin. For the purpose of discretization we use δt = 0.1 as time discretization for the

simulations. The state space X is chosen to be limited in [−π, π]× [−10, 10] and is partitioned into

70×70 = 4900 boxes. For constructing the P-F matrix 10 initial conditions are located in each box.

The control set is discretized as follows U = {−80,−70 . . . ,−10, 0, 10, . . . , 70, 80}. Similarly, the

range of random parameter [−σ, σ] is divided into 10 uniformly spaced discrete values for random

parameter ξ.
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Figure 5.1: Phase portrait of inverted pendulum on a cart

In Fig. 5.1, we show the phase portrait of the uncontrolled inverted pendulum. The objective

is to stabilize the saddle point at the origin.

Case 1: σ = 0.02

(a) (b)

Figure 5.2: Case 1: a) Lyapunov measure; b) Control measure
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From figure 5.2, trajectories of the Lyapunov measure look similar to the phase portrait of the

deterministic system. We observe the control values to stabilize the system as well.

Corresponding cost values in Fig. 5.3 show that the trajectories in the vertical middle section

of phase plane including all of top and bottom required very high control cost to stabilize except

the stable manifold directed from the top left to bottom right where there is very low or no cost of

stabilization.

(a) (b)

Figure 5.3: Case 1: a) Optimal Cost; b) Success of stabilization

Now, to see the performance of stabilization we plot the fraction of points in each boxes which

were stabilized to the attractor set at the origin. The system has been everywhere stabilized except

two cells which have very small percentage of points likely to remain unstable. This can be occurring

from approximation error in finite dimensions.
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(a) (b)

Figure 5.4: Case 1: a) x-trajectory; b) y-trajectory

In Fig. 5.4, we see how the closed loop trajectories were captured to the equilibrium.

Case 2: σ = 0.1

(a) (b)

Figure 5.5: Case 2: a) Lyapunov measure; b) Control measure

With increase of stochasticity in ζ through parameter σ, we observe the performance of stabiliza-

tion deteriorated significantly. Lyapunov measure is quite different from the last case. Behaviour

found in phase portrait of the deterministic system is not identifiable in this case. For example,

the stable manifold is hardly visible in Fig. 5.5a.
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(a) (b)

Figure 5.6: Case 2: a) Cost of stabilization; b) Success of stabilization

(a) (b)

Figure 5.7: Case 2: a) x-trajectory; b) y-trajectory

In Fig. 5.7, we see how the closed loop trajectories were captured to the equilibrium even

for high stochasticity. However, from Fig. 5.6b, we see many cells failed in stabilization for the

available control set U . This implies, we might need a set of higher control bound or denser control

values for stabilizing this highly stochastic system.
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5.6.1.2 Vanderpol Oscillator

ẋ1 =x2

ẋ2 =ζ(1− x2
1)x2 − x1 − u (5.26)

The parameter ζ is assumed to be stochastic with mean 1 and uniformly distributed between

interval [1− σ, 1 + σ]. The system has a limit cycle as shown in Fig. 5.8 with unstable equilibrium

point at the origin. The objective is to optimally stabilize the unstable equilibrium at the origin.

The control set is discretized to U = {−15,−14,−13..., 13, 14, 15}

Figure 5.8: Phase portrait of Vanderpol Oscillator
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Case 1: σ = 0.05

(a) (b)

Figure 5.9: Case 1: a) Lyapunov measure; b) Control measure

(a) (b)

Figure 5.10: Case 1: a) Cost of stabilization; b) Percentage of points stabilized

Lyapunov measure in Fig. 5.9a does not fully reflect the phase portrait of the system since we

are concerned about the invariant set at origin instead of the largely dominant limit cycle. Close

system stabilizes all initial conditions as observed in 5.10
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Case 2: σ = 1.5

Now, the Lyapunov measure plot is largely deviated from that of Case 1. The limit cycle is no

longer distinguishable.

(a) (b)

Figure 5.11: Case 2: a) Lyapunov measure; b) Control measure

(a) (b)

Figure 5.12: Case 2: a) Cost of stabilization; b) Fraction of points stabilized
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From Fig. 5.12b, we observe few completely unstable cells in the right and left boundaries of

the phase space. This is not approximation error rather the control values from U , were not enough

to stabilize the highly stochastic system in this case.

5.6.2 Uncertainty in availability of control

In this section, we study the effects of Bernoulli distribution of control values on stabilization of

nonlinear systems. The probability that control value is available for the system is p means binary

erasure probability is q = 1− p. That implies the probability that control value was not available

during stabilization is q. We took different erasure probabilities for studying the effects of Bernoulli

distributed control design.

5.6.2.1 Inverted Pendulum on a Cart

The parameter b multiplying the control input is assumed to be Bernoulli random variable with

statistics Prob(b = 1) = p and Prob(b = 0) = 1− p for every time.

No erasure: q = 0

(a) (b)

Figure 5.13: a) Lyapunov measure for q = 0; b) Control measure for q = 0
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In this case, p = 1, which indicates control values are always available. Lyapunov measure plot

5.13a fairly resembles the phase portrait of the system. The stable manifold is visible as well.

(a) (b)

Figure 5.14: a) Cost of stabilization for q = 0; b) Fraction of points stabilized for q = 0

From the simulation we see that, system is completely stabilized when there is no erasure of

control.

Partial erasure: q = 0.15

In this case p = 0.85, so control values are available in 85% of the time. Comment: system is

almost stabilized.

Lyapunov measure plot 5.15a fairly resembles the phase portrait of the system but, now it is

less prominent than the previous case of zero erasure of control. The stable manifold is still visible.
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(a) (b)

Figure 5.15: a) Lyapunov measure for q = 0.15; b) Control measure for q = 0.15

(a) (b)

Figure 5.16: a) Cost of stabilization for q = 0.15; b) Percentage of points stabilized for q = 0.15

From the simulation we see that partial erasure of 15% of control values still makes the system

almost stabilized. Beyond this erasure value the system starts moving more to instability.
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Half erasure: q = 0.5

In this case p = 0.5, so control values are available in half of the instances. System could not

be stabilized. Lyapunov measure plot 5.17a largely deviated from the phase portrait of the system.

Stable or unstable manifolds are no longer visible.

(a) (b)

Figure 5.17: a) Lyapunov measure for q = 0.5; b) Control measure for q = 0.5

(a) (b)

Figure 5.18: a) Cost of stabilization for q = 0.5; b) Percentage of points stabilized for q = 0.5
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From the simulation results, we see that for high erasure (50% as shown above) of control values

the system can not be stabilized anymore.

However, we can observe few time domain simulations to understand how fast the trajectories

are being moved towards the invariant set. For no erasure or small erasure probability of control,

most of the trajectories move to the invariant set. For high erasure case (q = 0.5), most of the

trajectories move to invariant set between 10 to 15 iterations but the overall structure of the

system trajectories form a highly spanned right skewed distribution of iterations. So, there are

many trajectories tending not to move to invariant set for high erasure.

Figure 5.19: Histogram of steps to stabilize trajectories for q = 0.5 with 20 bins

Figure 5.20: Histogram of steps to stabilize trajectories for q = 0.5 with 100 bins
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We plot the steps to capture the trajectories in histogram in Fig 5.19 and 5.20. Comparing

these two histograms we observe that 20 equal bins captures the dynamics of trajectories quite

well. For these histograms, we used 64 initial points in each of the boxes while performing the time

domain simulation. That is why we could get a lot more detail on the trajectories in the discrete

phase space.

5.7 Conclusions

In this paper, Transfer Perron-Frobenius operator-based framework is introduced for optimal

stabilization of stochastic nonlinear systems. Weaker set-theoretic notion of almost everywhere

stability is used for the design of optimal stabilizing feedback controller. The optimal stabilization

problem is formulated as an infinite-dimensional linear program. The finite dimensional approx-

imation of the linear program and the associated optimal feedback controller is obtained using

set-oriented numerics. We outlined the shifts of lyapunov measure, control measure, cost and per-

cent of stabiization using set-oriented numerical algorithm which shows with increasing stochasticity

of parameters, system requires more rapid control actions for successful stabilization.
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CHAPTER 6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

As we approached system stabilization, we chose to study both model based and data-driven

analysis. This has potential to be useful for multitude of research problems in academia and in-

dustry since the transfer operator based stabilization has the advantage of linear approximated

models. To gather the knowledge of the systems we generate Koopman operators using EDMD and

NSDMD. Since Koopman operator and Perron-Frobenius operators are dual to each other, we can

easily obtain the transfer Perron-Frobenius operator for the system which essentially provides the

evolution of densities. This makes the stability analysis, controller design and optimal stabilization

much simpler. We use Lyapunov measure based stability design which requires solving a linear

program. Linear programs are easier to solve compared to other nonlinear optimization techniques

which are the cases if we were not using Transfer Operator approach. Therefore, the approach de-

scribed in this thesis for stability analysis and optimal stabilization makes the data-driven stability

analysis a much simpler than most other popular nonlinear techniques. The choice of appropriate

basis function still remains a open area for research. This approach can be extended to solve real

world complex nonlinear systems in the coming days.

6.2 Discussion and Future Work

With the introduction of the data-driven stability analysis, controller design and optimal sta-

bilization, we expect this work will be able to show paths to multiple directions of research for

data-driven stabilization. Radial basis function has positivity property which was an excellent first

choice for the analysis presented here. We can use other popular basis functions like Thin plate

spline, different Gaussian basis functions, positivity preserving monomial basis functions etc. Per-
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forming similar analysis with any of these, one could discover the most suitable basis to choose

for particular nonlinear system at hand. Discretization of state space and discretization of control

are assumed in set oriented approach. Level of discretization, whether fine or coarse often depends

on the system in consideration. Choosing appropriate discretization on control still concluded to

be case by case basis. However, it is possible to gather intuition how coarse control should be. It

would be an excellent research project to study these with more computational power using state of

the art high performance computing machines and gather more knowledge of this structure which

has potential to offer breakthroughs in controls research domain.
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